2023 Sessions On-Demand

#

All Sessions

Building a Real-Time IoT Application with Apache Pulsar and Apache Pinot

Timothy Spann

Session Speaker
Cloudera
Principal Developer Advocate, Cloudera
Tim Spann is the Principal Developer Advocate for Data in Motion @ Cloudera where he works with Apache Kafka, Apache Flink, Apache NiFi, Apache Iceberg, TensorFlow, Apache Spark, big data, the IoT, machine learning, and deep learning. Tim has over a decade of experience with the IoT, big data, distributed computing, streaming technologies, and Java programming. Previously, he was a Developer Advocate at StreamNative, Principal Field Engineer at Cloudera, a Senior Solutions Architect at AirisData and a senior field engineer at Pivotal. He blogs for DZone, where he is the Big Data Zone leader, and runs a popular meetup in Princeton on big data, the IoT, deep learning, streaming, NiFi, the blockchain, and Spark. Tim is a frequent speaker at conferences such as IoT Fusion, Strata, ApacheCon, Data Works Summit Berlin, DataWorks Summit Sydney, and Oracle Code NYC. He holds a BS and MS in computer science.

https://www.datainmotion.dev/p/about-me.html
https://dzone.com/users/297029/bunkertor.html

We will walk step-by-step with live code and demos on how to build a real-time IoT application with Pinot + Pulsar.

First, we stream sensor data from an edge device monitoring location conditions to Pulsar via a Python application.

We have our Apache Pinot “realtime” table connected to Pulsar via the pinot-pulsar stream ingestion connector.

Our data streams into the stream, and we visualize it with Superset.

https://medium.com/@tspann/building-a-real-time-iot-application-with-apache-pulsar-and-apache-pinot-1e3baf8c1824

Source Code
https://github.com/tspannhw/pulsar-thermal-pinot

Reference
https://docs.pinot.apache.org/basics/data-import/pinot-stream-ingestion/apache-pulsar
https://dev.startree.ai/docs/pinot/recipes/pulsar